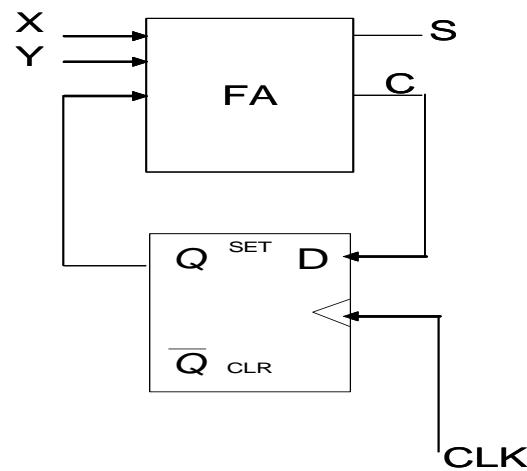


Chapter 5: Sequential Logic
Solutions to Problems: [2, 7, 9, 12, 13, 16, 18]

Problem 5-2:


Construct a JK flip-flop using a D flip-flop, a 4-to-1-line multiplexer and an inverter.

Solution:

Problem 5-7:

A sequential circuit has one flip-flop Q, two inputs x and y, and one output S. It consists of a full-adder circuit connected to a D flip-flop, as shown. Derive the state table and state diagram of the sequential circuit.

Solution:

FA equations:

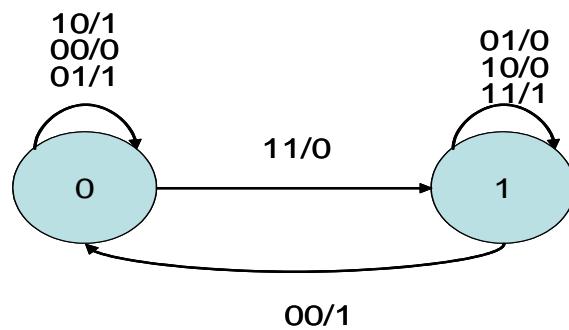
$$S = X \oplus Y \oplus Q$$
$$C = XY + XQ + YQ$$

Input equation:

$$D_Q = C$$
$$= XY + XQ + YQ \text{ (from the FA equations or from the K-map)}$$

Characteristic equation:

$$Q(t+1) = D = XY + XQ + YQ$$


State equation:

$$Q(t+1) = C$$

State Table:

PRESENT STATE	INPUTS		NEXT STATE	OUTPUT
Q	X	Y	Q	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

State Diagram:

Problem 5-9:

A sequential circuit has two JK flip-flops A and B and one input x. The circuit is described by the following flip-flop input equations :

$$J_A = x \quad K_A = B'$$

$$J_B = x \quad K_B = A$$

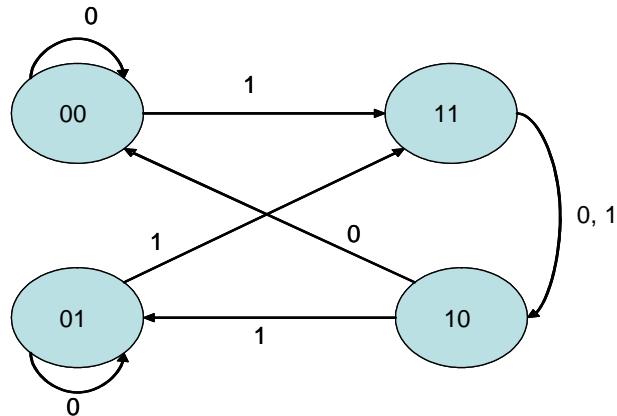
(a) Derive the state equation $A(t+1)$ and $B(t+1)$ by substituting the input equations for the J and K variables.
 (b) Draw the state diagram of the circuit.

Solution:

State equation:

$$Q(t+1) = JQ' + K'Q$$

Characteristic equation:


$$A(t+1) = XA' + BA$$

$$B(t+1) = XB' + A'B$$

State Table:

PRESENT STATE		INPUT	NEXT STATE		FLIP-FLOP INPUTS			
A	B	X	A	B	J_A	K_A	J_B	K_B
0	0	0	0	0	0	1	0	0
0	0	1	1	1	1	1	1	0
0	1	0	0	1	0	0	0	0
0	1	1	1	1	1	0	1	0
1	0	0	0	0	0	1	0	1
1	0	1	0	1	1	1	1	1
1	1	0	1	0	0	0	0	1
1	1	1	1	0	1	0	1	1

State Diagram:

Problem 5-12:

Reduce the number of states in the following table and tabulate the reduced state table.

PRESENT STATE	NEXT STATE		OUTPUT	
	X=0	X=1	X=0	X=1
a	f	b	0	0
b	d	c	0	0
c	f	e	0	0
d	g	a	1	0
e	d	c	0	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0

Solution:

States b,e are the same ,we will replace state e with state b .

States d,h are the same ,we will replace state h with state d .

PRESENT STATE	NEXT STATE		OUTPUT	
	X=0	X=1	X=0	X=1
a	f	b	0	0
b	d	c	0	0
c	f	b	0	0
d	g	a	1	0
f	f	b	1	1
g	g	d	0	1

States a,c are the same ,we will replace state c with state a .

PRESENT STATE	NEXT STATE		OUTPUT	
	X=0	X=1	X=0	X=1
a	f	b	0	0
b	d	a	0	0
d	g	a	1	0
f	f	b	1	1
g	g	d	0	1

Problem 5-13:

Starting from state a, and the input sequence 01110010011, determine the output sequence for:

- (a) the state table of the previous problem and
- (b) the reduced state table from the previous problem. Show that the same output sequence is obtained for both.

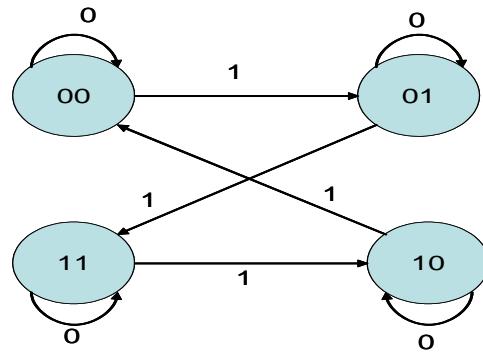
Solution:

(a) using the state table of the problem 5-12 :

state	a	f	b	c	e	d	g	h	g	g	h	a
input	0	1	1	1	0	0	1	0	0	1	1	
output	0	1	0	0	0	1	1	1	0	1	0	

(b) using the reduced state table of the problem 5-12 :

state	a	f	b	a	b	d	g	d	g	g	d	a
input	0	1	1	1	0	0	1	0	0	1	1	
output	0	1	0	0	0	1	1	1	0	1	0	


The same output sequence is obtained for both.

Problem 5-16:

Design a sequential circuit with two D flip-flops A and B, and one input x. When $x=0$, the state of the circuit remains the same. When $x=1$, the circuit goes through the state transitions from 00 to 01 to 11 to 10 back to 00, and repeats.

Solution:

State Diagram:

State Table:

PRESENT STATE		INPUT	NEXT STATE	
A	B	X	A	B
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	1
1	0	0	1	0
1	0	1	0	0
1	1	0	1	1
1	1	1	1	0

Characteristic equation:

$$Q(t+1) = D$$

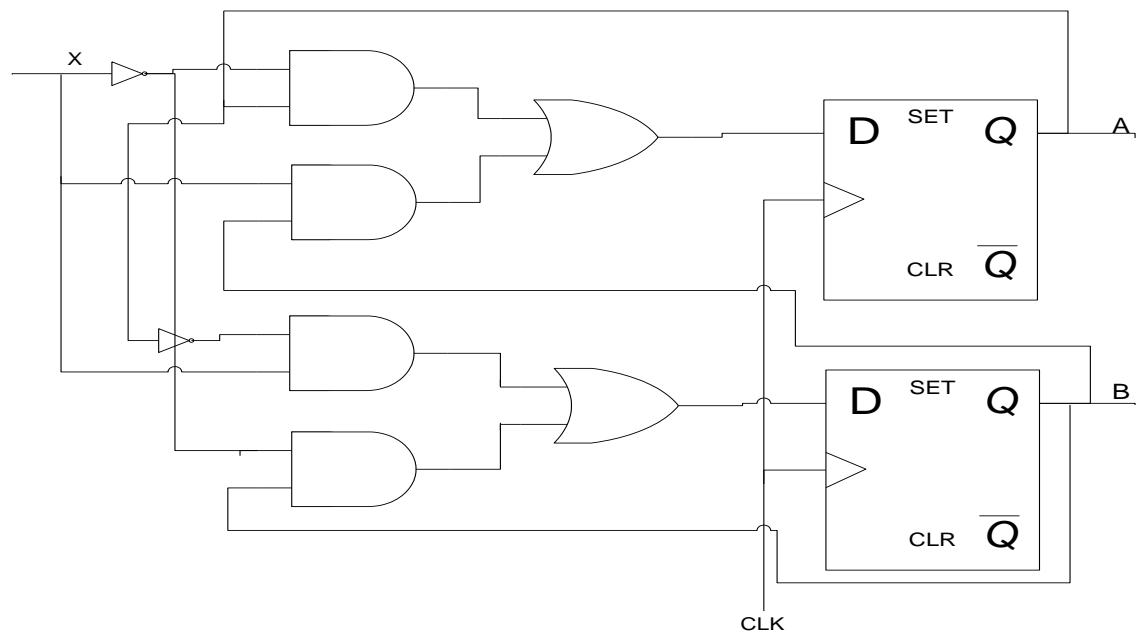
Input equations or State equations :

$$A(t+1) = D_A (A, B, X) = \sum (3, 4, 6, 7)$$
$$B(t+1) = D_B (A, B, X) = \sum (1, 2, 3, 6)$$

K-maps :

D_A

		BX				
		00	01	11	10	
A		0			1	
0				1		
1		1		1		1

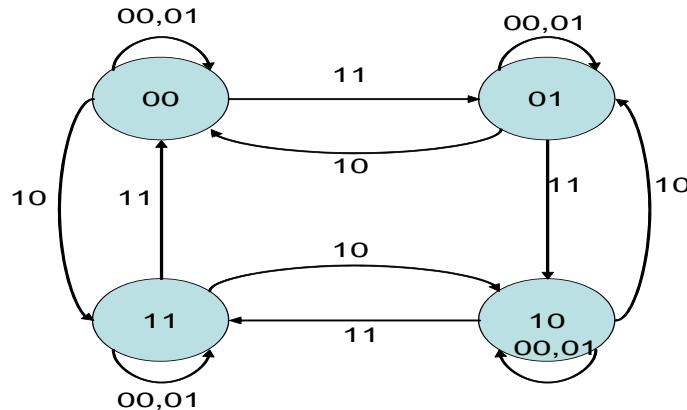

$$D_A = BX + AX'$$

D_B

		BX			
		0	1	11	10
A		0	1	1	
0			1	1	
1					1

$$D_B = A'X + BX'$$

Circuit Diagram :



Problem 5-18:

Design a sequential circuit with two JK flip-flops A and B and two inputs E and x. If E = 0, the circuit remains in the same state regardless of the value of x. When E = 1 and x = 1, the circuit goes through the state transitions from 00 to 01 to 10 to 11 back to 00, and repeats. When E = 1 and x = 0, the circuit goes through the state transitions from 00 to 11 to 10 to 01 back to 00, and repeats.

Solution:

State Diagram:

State Table:

PRESENT STATE		INPUT		NEXT STATE		FLIP-FLOP INPUTS			
A	B	E	X	A	B	J _A	K _A	J _B	K _B
0	0	0	0	0	0	0	X	0	X
0	0	0	1	0	0	0	X	0	X
0	0	1	0	1	1	1	X	1	X
0	0	1	1	0	1	0	X	1	X
0	1	0	0	0	1	0	X	X	0
0	1	0	1	0	1	0	X	X	0
0	1	1	0	0	0	0	X	X	1
0	1	1	1	1	0	1	X	X	1
1	0	0	0	1	0	X	0	0	X
1	0	0	1	1	0	X	0	0	X
1	0	1	0	0	1	X	1	1	X
1	0	1	1	1	1	X	0	1	X
1	1	0	0	1	1	X	0	X	0
1	1	0	1	1	1	X	0	X	0
1	1	1	0	1	0	X	0	X	1
1	1	1	1	0	0	X	1	X	1

K-maps :

		EX				10
		AB	00	01	11	
	0	0	0	0	0	1
	1	0	0	0	1	0

$$J_A = BEX + B'EX' = E(B \oplus X)'$$

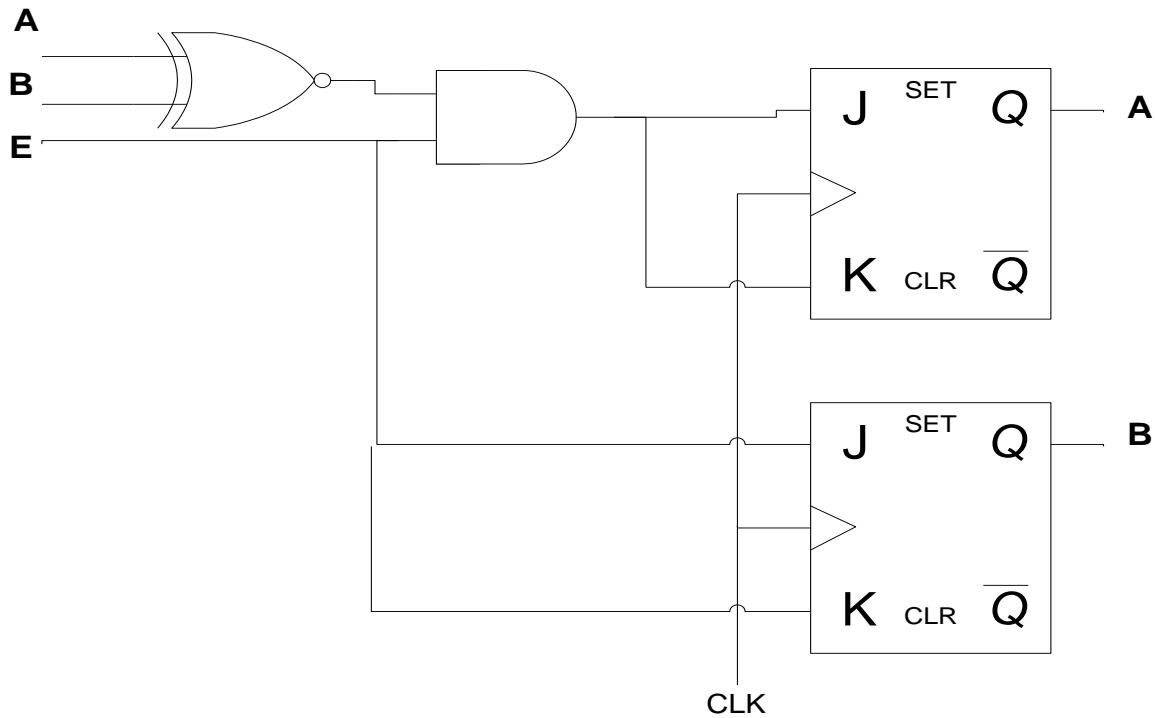
K_A

		EX			
AB		0	1	11	10
0	0	X	X	X	X
	1	X	X	X	X
11	0	0	0	1	0
10	0	0	0	0	1

$$K_A = BEX + B'EX' = E(B \oplus X)'$$

J_B

		EX			
AB		0	1	11	10
0	0	0	0	1	1
	1	X	X	X	X
11	X	X	X	X	X
10	0	0	0	1	1


$$J_B = E$$

K_B

		EX			
AB		0	1	11	10
0	0	X	X	X	X
	1	0	Page 9 of 10		1
11	0	0	1	1	
10	X	X	X	X	

$$K_B = E$$

Circuit Diagram :

This sequential circuit behaves like a 2-bit up-down-counter, with E the enable of the whole counter, and resets when it finishes counting , when X=1, it behaves like an up-counter, when X=0 ,it behaves like a down-counter.