

Chapter 2: Boolean Algebra & Logic Gates

Solutions of Problems: [18, 21, 23]

Problem 18:

Convert the following to the other canonical form:

$$(a) F(x, y, z) = \Sigma(1, 3, 7)$$

$$(b) F(A, B, C, D) = \Pi(0, 1, 2, 3, 4, 6, 12)$$

Solution:

$$(a) F(x, y, z) = \Sigma(1, 3, 7) = \Pi(0, \bar{y}, \bar{z}, \bar{y}, \bar{z})$$

$$F(x, y, z) = (x + y + z) \bullet (x + \bar{y} + z) \bullet (\bar{x} + y + z) \bullet (\bar{x} + \bar{y} + z) \bullet (\bar{x} + y + \bar{z}) \bullet (\bar{x} + \bar{y} + \bar{z})$$

$$(b) F(A, B, C, D) = \Pi(0, 1, 2, 3, 4, 6, 12) = \Sigma(5, 7, 8, 9, 10, 11, 13, 14, 15)$$

$$F(A, B, C, D) =$$

$$(\bar{A}\bar{B}\bar{C}\bar{D}) + (\bar{A}\bar{B}\bar{C}D) + (A\bar{B}\bar{C}\bar{D}) + (A\bar{B}\bar{C}D) + (A\bar{B}C\bar{D}) + (A\bar{B}C\bar{D}) + (ABC\bar{D}) + (ABCD)$$

Problem 21:

Show that the dual of the exclusive-OR is equal to its complement.

Solution:

$$\text{XOR: } X \oplus Y = XY' + X'Y$$

$$\begin{aligned} \text{Dual of XOR: } &= (X + Y') \bullet (X' + Y) \\ &= XX' + XY + X'Y' + YY' \\ &= XY + X'Y' \end{aligned}$$

$$\begin{aligned} \text{Complement of XOR (XNOR): } &= (X \oplus Y)' \\ &= (XY' + X'Y)' \\ &= (X' + Y) \bullet (X + Y') \\ &= XX' + XY + X'Y' + YY' \\ &= XY + X'Y' \end{aligned}$$

Problem 23:

Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

Solution:

Truth table for a NAND gate:

X	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

Truth table for positive logic NAND gate ($L = 0$ $H = 1$) with H and L:

X	Y	Z
L	L	H
L	H	H
H	L	H
H	H	L

Truth table for negative logic let $L = 1$, $H = 0$

X	Y	Z
1	1	0
1	0	0
0	1	0
0	0	1

This resulting truth table is that of the NOR gate using negative logic.